
【引言】高三总复习数学教案【多篇】为的会员投稿推荐,但愿对你的学习工作带来帮助。
高三总复习数学教案 篇一高中数学命题教案
命题及其关系
1.1.1命题及其关系
一、课前小练:阅读下列语句,你能判断它们的真假吗?
(1)矩形的对角线相等;
(2)3 ;
(3)3 吗?
(4)8是24的约数;
(5)两条直线相交,有且只有一个交点;
(6)他是个高个子。
二、新课内容:
1、命题的概念:
①命题:可以判断真假的陈述句叫做命题(proposition)。
上述6个语句中,哪些是命题。
②真命题:判断为真的语句叫做真命题(true proposition);
假命题:判断为假的语句叫做假命题(false proposition)。
上述5个命题中,哪些为真命题?哪些为假命题?
③例1:判断下列语句中哪些是命题?是真命题还是假命题?
(1)空集是任何集合的子集;
(2)若整数 是素数,则 是奇数;
(3)2小于或等于2;
(4)对数函数是增函数吗?
(5) ;
(6)平面内不相交的两条直线一定平行;
(7)明天下雨。
(学生自练 个别回答 教师点评)
④探究:学生自我举出一些命题,并判断它们的真假。
2、将一个命题改写成“若 ,则 ”的形式:
三、练习:教材 P4 1、2、3
四、作业:
1、教材P8第1题
2、作业本1-10
五、课后反思
命题教案
课题1.1.1命题及其关系(一)课型新授课
目标
1)知识方法目标
了解命题的概念,
2)能力目标
会判断一个命题的真假,并会将一个命题改写成“若 ,则 ”的形式。
重点
难点
1)重点:命题的改写
2)难点:命题概念的理解,命题的条件与结论区分
教法与学法
教法:
教学过程备注
1、课题引入
(创设情景)
阅读下列语句,你能判断它们的真假吗?
(1)矩形的对角线相等;
(2)3 ;
(3)3 吗?
(4)8是24的约数;
(5)两条直线相交,有且只有一个交点;
(6)他是个高个子。
2、问题探究
1)难点突破
2)探究方式
3)探究步骤
4)高潮设计
1、命题的概念:
①命题:可以判断真假的陈述句叫做命题(proposition)。
上述6个语句中,(1)(2)(4)(5)(6)是命题。
②真命题:判断为真的语句叫做真命题(true proposition);
假命题:判断为假的语句叫做假命题(false proposition)。
上述5个命题中,(2)是假命题,其它4个都是真命题。
③例1:判断下列语句中哪些是命题?是真命题还是假命题?
(1)空集是任何集合的子集;
(2)若整数 是素数,则 是奇数;
(3)2小于或等于2;
(4)对数函数是增函数吗?
(5) ;
(6)平面内不相交的两条直线一定平行;
(7)明天下雨。
(学生自练 个别回答 教师点评)
④探究:学生自我举出一些命题,并判断它们的真假。
2、将一个命题改写成“若 ,则 ”的形式:
①例1中的(2)就是一个“若 ,则 ”的命题形式,我们把其中的 叫做命题的'条件, 叫做命题的结论。
②试将例1中的命题(6)改写成“若 ,则 ”的形式。
③例2:将下列命题改写成“若 ,则 ”的形式。
(1)两条直线相交有且只有一个交点;
(2)对顶角相等;
(3)全等的两个三角形面积也相等。
(学生自练 个别回答 教师点评)
3、小结:命题概念的理解,会判断一个命题的真假,并会将命题改写“若 ,则 ”的形式。
引导学生归纳出命题的概念,强调判断一个语句是不是命题的两个关键点:是否符合“是陈述句”和“可以判断真假”。
通过例子引导学生辨别命题,区分命题的条件和结论。改写为“若 ,则 ”的形式,为后续的学习打好基础。
3、练习提高1. 练习:教材 P4 1、2、3
师生互动
4、作业设计
作业:
1、教材P8第1题
2、作业本1-10
5、课后反思
高三总复习数学教案 篇二高三数学二轮专题复习教案——数列
一、本章知识结构:
二、重点知识回顾
1、数列的概念及表示方法
(1)定义:按照一定顺序排列着的一列数。
(2)表示方法:列表法、解析法(通项公式法和递推公式法)、图象法。
(3)分类:按项数有限还是无限分为有穷数列和无穷数列;按项与项之间的大小关系可分为单调数列、摆动数列和常数列。
(4) 与 的关系: 。
2、等差数列和等比数列的比较
(1)定义:从第2项起每一项与它前一项的差等于同一常数的数列叫等差数列;从第2项起每一项与它前一项的比等于同一常数(不为0)的数列叫做等比数列。
(2)递推公式: 。
(3)通项公式: 。
(4)性质 等差数列的主要性质: ①单调性: 时为递增数列, 时为递减数列, 时为常数列。 ②若 ,则 。特别地,当 时,有 。 ③ 。 ④ 成等差数列。 等比数列的主要性质: ①单调性:当 或 时,为递增数列;当 ,或 时,为递减数列;当 时,为摆动数列;当 时,为常数列。 ②若 ,则 。特别地,若 ,则 。 ③ 。 ④ ,…,当 时为等比数列;当 时,若 为偶数,不是等比数列。若 为奇数,是公比为 的等比数列。
三、考点剖析 考点一:等差、等比数列的概念与性质
例1. (2008深圳模拟)已知数列 (1)求数列 的通项公式; (2)求数列 解:(1)当 ;、当 , 、(2)令 当 ; 当 综 ……此处隐藏2387个字……3:数列{an}是等差数列,若m+n=p+q,则am+an=ap+aq.
二、教授新课(尝试推导)
师:如果已知等差数列的首项a1,项数为n,第n项an,根据等差数列的性质,如何来导出它的前n项和Sn计算公式呢?根据上面的例子同学们自己完成推导,并请一位学生板演。
生4:Sn=a1+a2+。.。.。.an-1+an也可写成
Sn=an+an-1+。.。.。.a2+a1
两式相加得2Sn=(a1+an)+(a2+an-1)+。.。.。.(an+a1)
n个
=n(a1+an)
所以Sn=
#FormatImgID_0#
(I)
师:好!如果已知等差数列的首项为a1,公差为d,项数为n,则an=a1+(n-1)d代入公式(1)得
Sn=na1+
#FormatImgID_1#
d(II) 上面(I)、(II)两个式子称为等差数列的前n项和公式。公式(I)是基本的,我们可以发现,它可与梯形面积公式(上底+下底)×高÷2相类比,这里的上底是等差数列的首项a1,下底是第n项an,高是项数n。引导学生总结:这些公式中出现了几个量?(a1,d,n,an,Sn),它们由哪几个关系联系?[an=a1+(n-1)d,Sn=
#FormatImgID_2#
=na1+
#FormatImgID_3#
d];这些量中有几个可自由变化?(三个)从而了解到:只要知道其中任意三个就可以求另外两个了。下面我们举例说明公式(I)和(II)的一些应用,
三、公式的应用(通过实例演练,形成技能)。
1、直接代公式(让学生迅速熟悉公式,即用基本量观点认识公式)例2、计算:
(1)1+2+3+。.。.。.+n
(2)1+3+5+。.。.。.+(2n-1)
(3)2+4+6+。.。.。.+2n
(4)1-2+3-4+5-6+。.。.。.+(2n-1)-2n
请同学们先完成(1)-(3),并请一位同学回答。
生5:直接利用等差数列求和公式(I),得
(1)1+2+3+。.。.。.+n=
#FormatImgID_4#
(2)1+3+5+。.。.。.+(2n-1)=
#FormatImgID_5#
(3)2+4+6+。.。.。.+2n=
#FormatImgID_6#
=n(n+1)
师:第(4)小题数列共有几项?是否为等差数列?能否直接运用Sn公式求解?若不能,那应如何解答?小组讨论后,让学生发言解答。
生6:(4)中的数列共有2n项,不是等差数列,但把正项和负项分开,可看成两个等差数列,所以
原式=[1+3+5+。.。.。.+(2n-1)]-(2+4+6+。.。.。.+2n)
=n2-n(n+1)=-n
生7:上题虽然不是等差数列,但有一个规律,两项结合都为-1,故可得另一解法:
原式=-1-1-.。.。.。-1=-n
n个
师:很好!在解题时我们应仔细观察,寻找规律,往往会寻找到好的方法。注意在运用Sn公式时,要看清等差数列的项数,否则会引起错解。
例3、(1)数列{an}是公差d=-2的等差数列,如果a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。
生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4
又∵d=-2,∴a1=6
∴S12=12 a1+66×(-2)=-60
生9:(2)由a1+a2+a3=12,a1+d=4
a8+a9+a10=75,a1+8d=25
解得a1=1,d=3 ∴S10=10a1+
#FormatImgID_7#
=145
师:通过上面例题我们掌握了等差数列前n项和的公式。在Sn公式有5个变量。已知三个变量,可利用构造方程或方程组求另外两个变量(知三求二),请同学们根据例3自己编题,作为本节的课外练习题,以便下节课交流。
师:(继续引导学生,将第(2)小题改编)
①数列{an}等差数列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,求a1,d,n
②若此题不求a1,d而只求S10时,是否一定非来求得a1,d不可呢?引导学生运用等差数列性质,用整体思想考虑求a1+a10的值。
2、用整体观点认识Sn公式。
例4,在等差数列{an}, (1)已知a2+a5+a12+a15=36,求S16;(2)已知a6=20,求S11。(教师启发学生解)
师:来看第(1)小题,写出的计算公式S16=
#FormatImgID_8#
=8(a1+a6)与已知相比较,你发现了什么?
生10:根据等差数列的性质,有a1+a16=a2+a15=a5+a12=18,所以S16=8×18=144。
师:对!(简单小结)这个题目根据已知等式是不能直接求出a1,a16和d的,但由等差数列的性质可求a1与an的和,于是这个问题就得到解决。这是整体思想在解数学问题的体现。
师:由于时间关系,我们对等差数列前n项和公式Sn的运用一一剖析,引导学生观察当d≠0时,Sn是n的二次函数,那么从二次(或一次)的函数的观点如何来认识Sn公式后,这留给同学们课外继续思考。
最后请大家课外思考Sn公式(1)的逆命题:
已知数列{an}的前n项和为Sn,若对于所有自然数n,都有Sn=
#FormatImgID_9#
。数列{an}是否为等差数列,并说明理由。
四、小结与作业。
师:接下来请同学们一起来小结本节课所讲的内容。
生11:1、用倒序相加法推导等差数列前n项和公式。
2、用所推导的两个公式解决有关例题,熟悉对Sn公式的运用。
生12:1、运用Sn公式要注意此等差数列的项数n的值。
2、具体用Sn公式时,要根据已知灵活选择公式(I)或(II),掌握知三求二的解题通法。
3、当已知条件不足以求此项a1和公差d时,要认真观察,灵活应用等差数列的有关性质,看能否用整体思想的方法求a1+an的值。
师:通过以上几例,说明在解题中灵活应用所学性质,要纠正那种不明理由盲目套用公式的学习方法。同时希望大家在学习中做一个有心人,去发现更多的性质,主动积极地去学习。
本节所渗透的数学方法;观察、尝试、分析、归纳、类比、特定系数等。
你也可以在搜索更多本站小编为你整理的其他高三总复习数学教案【多篇】范文。