
【摘要】《因数和倍数》数学教案【精品多篇】为的会员投稿推荐,但愿对你的学习工作带来帮助。
《因数与倍数》小学教案 篇一【知识点讲解和梳理】
一、数的世界
1、认识自然数和整数,联系乘法认识倍数与因数。
整数:如-3,-2,-1,0,1,2,3,4……这样的数叫做整数。
自然数:如0,1,2,3,4,5……这样的数叫做自然数。
2、我们只在自然数(零除外)范围内研究倍数和因数。
3、倍数与因数是相互依存的关系,要说清谁是谁的倍数,谁是谁的因数。补充【知识点】:一个数的倍数的个数是无限的。
二、2,5的倍数的特征
1、2的倍数的特征。个位上是0,2,4,6,8的数是2的倍数。
2、5的倍数的特征。个位上是0或5的数是5的倍数。
3、偶数和奇数的定义。是2的倍数的数叫偶数,不是2的倍数的数叫奇数。
4、能判断一个数是不是2或5的倍数。
5、、能判断一个非
零自然数是奇数或偶数。
补充【知识点】:既是2的倍数,又是5的倍数的特征:个位上是0的数既是2的倍数,又是5的倍数。
三、3的倍数的特征
1、3的倍数的特征。
一个数各个数位上的数字的和是3的倍数,这个数就是3的倍数。
2、能判断一个数是不是3的倍数。
补充【知识点】:
1、同时是2和3的倍数的特征:个位上的数是0,2,4,6,8,并且各个数位上的数字的和是3的倍数的数,既是2的倍数,又是3的倍数。
2、同时是3和5的倍数的特征:个位上的数是0或5,并且各个数位上的数字的和是3的倍数的数,既是3的倍数,又是5的倍数。
3、同时是2,3和5的倍数的特征。个位上的数是0,并且各个数位上的数字的和是3的倍数的数,既是2和5的倍数,又是3的倍数。
四、找因数
在1~100的自然数中,找出某个自然数的所有因数。
方法:运用乘法算式,思考:哪两个数相乘等于这个自然数。找一个数的因数,就是看它可以由哪两个因数相乘得到
补充【知识点】:一个数的因数的个数是有限的。其中最小的因数是1,最大的因数是它本身。
五、找质数
1、理解质数与合数的意义。
按因数的个数分类:大于1的自然数可以分为(质数)和(合数)。
一个数只有1和它本身两个因数,这个数叫作质数。
一个数除了1和它本身以外还有别的因数,这个数叫作合数。
2、1既不是质数也不是合数。
3、判断一个数是质数还是合数的方法:
一般来说,首先可以用“2,5,3的倍数的特征”判断这个数是否有因数2,5,3;如果还无法判断,
则可以用7,11等比较小的质数去试除,看有没有因数7,11等。只要找到一个1和它本身以外的因数,就能肯定这个数是合数。如果除了1和它本身找不到其他因数,这个数就是质数。
4、100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、、79、83、89、97。
补充【知识点】既是质数,又是偶数的自然数(2);既是质数,又是奇数的最小数(3)
既不是质数,又不是合数的数(1);既是偶数,又是合数的最小数(4)
既是奇数又是合数的最小数(9);最大的一位合数,还是偶数(8)
六、数的奇偶性
1、运用“列表”“画示意图”等方法发现规律:
小船最初在南岸,从南岸驶向北岸,再从北岸驶回南岸,不断往返。通过“列表”“画示意图”的方法会发现“奇数次在北岸,偶数次在南岸”的规律。
2、能够运用上面发现的数的奇偶性解决生活中的一些简单问题。
3、通过计算发现奇数、偶数相加奇偶性变化的规律:
偶数+偶数=偶数奇数+奇数=偶数偶数+奇数=奇数
补充【知识点】:
大于2的偶数都是合数。(√)
所有的质数都是奇数。如:2(×)
一个数最小的倍数和最大的因数都是它本身。(√)
两个相邻的自然数必定一质一合。如:2和3(×)
最小的质数是2,最小的合数是4,最小的偶数是0,最小的奇数是1
(√)两个连续的自然数都是质数,这两个数是2和3(√)
两个质数的积一定是合数(√)
两个质数的和,可能是质数,也可能是合数。如2+3=53+5=8(√)
奇数+奇数=偶数奇数+偶数=奇数(√)
【重点知识归纳及讲解】
1、公约数、最大公约数和互质数的意义
(1)公约数的意义。几个数公有的约数,叫做这几个数的公约数。
如:12和18的公约数有:1、2、3、6.
(2)最大公约数的意义。几个数的公约数中最大的一个,叫这几个数的最大公约数。如:12和18的最大公约数是6.
(3)互质数的意义。公约数只有1的'两个数,叫做互质数。如:3和8是互质数,15和16也是互质数。
①成为互质数的两个数,不限定必须是质数。
②质数和互质数的意义不同。质数是就一个数说的,互质数是就两个数的关系说的。
2、注意:求两个数的最大公约数的两种特殊情况。
①如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。如:15和45的最大公约数是15。
②如果两个数是互质数,它们的最大公约数就是1。如:8和15的最大公约数是1。
3、解题技巧指点:
(1)求几个数的最大公约数时,要正确地理解和运用“最大公约数乘半边”这一规律,即求最大公约数时,要把所有的除数都乘起来。
(2)用短除法求两个数的公约数时,不一定要用最小的质数去除,也可以用较大的合数甚至是最大的公约数去除。
(3)用短除法求两个数的最大公约数时,最后的两个商一定要是互质数,否则,求得的结果就不是最大公约数。
(4)正确判断是求已知几个数的最大公约数还是求最小公倍数是应用题的解题关键。技巧是:如果所求的数能够整除几个已知同类数,是求最大公约数的问题;如果所求数必须能同时被已知几个同类数整除,是求最小公倍数问题。如:
①用某数去除23、32结果都余2,问这个数最大是多少?(求最大公约数问题)
②某班同学如果每8人一组,或是每12人一组,结果都差3人,求某班学生最少有多少人?(求最小公倍数问题)
……此处隐藏5221个字……感受后,再向学生说明:我们在研究倍数和因数时,所说的数一般指不是0的自然数,明确了因数和倍数的研究范围。
3、P71例一:找3的倍数,先让学生独立思考,“你还能再写出几个3的倍数?你是怎样想的?”在学生交流的基础上,适时提出:什么样的数就是3的倍数?你能按照从小到大的顺序有条理地说出3的倍数吗?使学生明确:找3的倍数时,可以按从到大的顺序,依次用1、2、3……与3相乘,而每次乘得的积都是3的倍数。在此基础上,引导学生进一步思考:你能把3的倍数全都说完吗?从而使学生学会规范地表示一个数的所有倍数,并初步体会到一个数的个数是无限的。随后,让学生试着找出2和5的倍数,并正确表达2和5的所有倍数。最后引导学生观察写出的3、2和5的所有倍数,发现一个数的倍数的特点,即:一个数的最小的倍数是它本身,没有最大的倍数。一个数的倍数的个数是无限的。
4、例二:找36的所有因数,准备让学生独立尝试,但这部分内容对学生来说是个难点,所以我采用了四人小组合作的方式让学生试着找出36的所有因数。在找36的因数时,无论想乘法算式还是想除法算式,学生一般都从无序到有序,从有重复或遗漏到不重复不遗漏。所以,我在教学时允许他们经历这样的过程。先按自己的思路、用自己的方法写36的因数,能写几个就写几个,是什么顺序就什么顺序。然后在交流中互相评价,让他们知道一组一组地找比较方便,可以利用乘法算式,按一个因数从小到大的顺序,同时又让他们掌握按次序地书写。此外,结合例题和试一试,通过比较和归纳,使学生明确:一个数的因数的个数是有限的,一个数的因数中最小的是1,最大的是它本身。
5、教材P72第2题让学生解决实际问题在表里填数,把4依次乘1、2、3、……得出“应付元数”,然后思考下面的问题,可以使学生进一步认识把4依次乘1,2,3,……所得的积,就是4的倍数,进一步理解找倍数的方法。第3题也是解决实际问题填写表里的数,并提出问题让学生思考,使学生明确两个相乘的数都是它们积的因数,求一个数的所有因数,可以想乘法一对一对地找出来,理解找一个数的因数的方法。
为了提高学生学习兴趣,巩固所学的知识。最后安排了一个游戏,让学生在游戏中进一步练习找一个数倍数或因数的方法。。
《因数和倍数》数学教案 篇六教学目标
1、知识与技能
掌握因数、倍数的概念,知道因数、倍数的相互依存关系。
2、过程与方法
通过自主探究,使学生学会用因数、倍数描述两个数之间的关系。
3、情感态度与价值观
使学生感悟到数学知识的内在联系的逻辑之美。
教学重难点
教学重点
掌握找一个数的因数、倍数的方法。
教学难点
能熟练地找一个数的因数和倍数。
教学工具
课件、投影
教学过程
一、迁移引入
同学们,在我们的日常生活中,人与人之间存在着许多相互依存的关系,如:佳爸是佳佳的爸爸,佳佳是佳爸的儿子。其实在我们的数学王国里,数与数回见也存在着这种相互依存的关系,请看大平米,认识这些吗?(课件出示:0,1,2,3,4,5……)
这些自然数。(课件去“0”)
去0后这又是什么数?(非零自然数中。)这节课我们就在非零自然数中来研究数与数之间的这种相互依存的关系。
板书:因数和倍数
二、情境创设,探究新知
1、理解整除的意义。
(1)出示例1,在前面学习中,我们见过下面的算式。
12÷2=6 8÷3=2……2 30÷6=5 19÷7=2……5 9÷5=1.8
26÷8=3.25 20÷10=2 21÷21=1 63÷9=7
你能把这些算式分类吗?
(2)分类所得:
第
一
类
12÷2=6 20÷10=2
30÷6=5 21÷21=1
63÷9=7
第
二
类
8÷3=2……2 9÷5=1.8
19÷7=2……5 26÷8=3.25
(3)观察发现,合作交流。
观察算式,说一说谁是谁的倍数,谁是谁的约数。
2、理解因数、倍数的意义。
12÷2=6中,我们就说12是2的倍数,2是12的因数。12÷6=2,所以12是6的倍数,6是12的因数。由此可知:(在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。)
3、总结归纳
(1)在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。
(2)因数与倍数是相互依存的关系。
4、注意:
为了方便,在研究因数和倍数的时候,我们所说的数指的是自然数(一般不包括0)。
5、做一做。
下面的4组数中,谁是谁的因数?谁是谁的倍数?
4和24 36÷13 75÷25 81÷9
6、教学例2
18的因数有哪几个?
18的因数有1、2、3、6、9、18。
也可以这样用图表示。
18的因数
1,2,3,
6,9,18
30的因数有哪些?36呢?
7、教学例3
2的倍数有哪些?
2的倍数有2、4、6、8……
2的倍数
2,4,6,
8,10,12,
14,……
3的倍数有哪些?5呢?
8、小组讨论,归纳总结
一个数的最小因数是1,最大的因数是它本身。一个数的最小倍数是它本身,没有最大倍数。
一个数的因数的个数是有限的,一个数的倍数的个数是无限的。
课后小结
一个数的最小因数是有限的,其中最小的因数是1,最大的因数是它本身。一个数的最小倍数是它本身,没有最大倍数。
一个数的因数的个数是有限的,最大的因数是它本身。一个数的倍数的个数是无限的。
课后习题
1、填空。
(1)36是4的( )数。
(2)5是25的( )。
(3)2.5是0.5的( )倍。
2、下面各组数中,有因数和倍数关系的有哪些?
(1)18和3 (2)120和60 (3)45和15 (4)33和7
3、24和35的因数都有哪些?
板书
一个数的最小因数是有限的,其中最小的因数是1,最大的因数是它本身。一个数的最小倍数是它本身,没有最大倍数。
一个数的因数的个数是有限的,最大的因数是它本身。一个数的倍数的个数是无限的。
你也可以在搜索更多本站小编为你整理的其他《因数和倍数》数学教案【精品多篇】范文。